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Non-equilibrium fluctuations in a master equation system 
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Abstract. van Kampen’ssystematic expansion of the master equation is used to obtain some 
non-equilibrium properties of a one-dimensional model. We derive the phenomenological 
equation of motion and to zero order in the expansion parameter m/(m +M), we also 
calculate the velocity autocorrelation function, the fluctuation spectrum and the time- 
dependent diffusion coefficient for two degrees of departure from equilibrium. We find that 
the correlation function does not exhibit a long-time tail pattern and finally, for a 
generalisation of the model considered, we show that for further away from equilibrium 
situations a memory sets into the system giving rise to a specific structure of the hydro- 
dynamical equation for the local concentration variable. 

1. Introduction 

The problem of determining the influence of fluctuations around the macroscopic 
behaviour of a many-body system has received much attention in recent years and has 
given rise to much literature. This influence has been studied in a large variety of 
phenomena such as fluctuations in the Boltzmann equation, fluctuating hydrodynamics 
or phenomena of the type of phase transitions where the system is in an unstable 
situation. 

The most widely used theoretical tools in the study of time-varying fluctuations have 
long been the phenomenological Fokker-Planck equation and the Langevin equation 
(Zwanzig 1972, Zwanzig et a1 1972, Kawasaki 1973,1974), although they have been 
subjected to serious objections (van Kampen 1976, Garcia-Colin 1979). Methods 
based on extensions of the microscopic Mori approach, that form the basis of mode- 
mode coupling theory, have also been used (Garcia-Colin 1979, Keyes and Oppenheim 
1973, Kapral et a1 1973,1974). 

Another type of mesoscopic approach is based on the master equation governing the 
probability distribution of the variables involved. It applies to non-stationary states far 
from equilibrium as well as to stationary states. The main problem is to solve this 
equation, or, in the case of nonlinear systems, to find a suitable approximation method. 
van Kampen (1961, 1965) has introduced a systematic expansion procedure based on 
the reciprocal size of the system. The purpose of this paper is to use this systematic 
expansion of the master equation to calculate the non-equilibrium fluctuations and 
their effect on some properties of a well known model, the so-called Rayleigh piston 
(Rayleigh 1902, Alkemade et a1 1963, Hoare 1971). In this model a massive Brownian 
particle of mass M is constrained to move in one dimension and is subject to impulsive 
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collisions with the light molecules of mass m of a Knudsen gas in equilibrium. This 
model is itself simple enough for easy, explicit mathematical description, yet real 
enough to embody some basic features of fluctuation phenomena. 

We have considered this model in a previous paper (Rodriguez and Garcia-Colin 
1978, to be referred to as I) where we calculated the equilibrium fluctuations and the 
diffusion coefficient up to second order in the small parameter m / ( m  + M ) .  Here we 
consider the non-equilibrium situation and from the master equation we derive the 
macroscopic or phenomenological equation when the system is near and further away 
from equilibrium. The degree of departure from equilibrium is measured in powers of a 
function 4(t)  which is introduced into the expansion procedure. We then obtain the 
velocity-velocity correlation function to order zero in the small parameter mentioned 
above for two degrees of departure from equilibrium. In terms of this correlation we 
also obtain the fluctuations spectrum and the diffusion coefficient for the massive 
particle. 

The organisation of the paper is as follows. In § 2 we summarise the main ideas 
behind the systematic expansion as used for this model. In 0 3 we derive the macro- 
scopic equation of motion and explicitly point out its main features especially for away 
from equilibrium situations. The fluctuations in the system are studied in Q 4. The 
calculations lead to an explicit expression for the velocity-velocity correlation function 
which corresponds to a stationary process when, to order zero in the expansion 
parameter, one considers situations close to and further away from equilibrium. The 
fluctuation spectrum and the time-dependent diffusion coefficient are computed in 9 6  5 
and 6, respectively. The main results are that not close to equilibrium the former one is 
no longer a single Lorentzian and that the diffusion coefficient is no longer a simple 
function of temperature and density. Also it does not exhibit a long-time tail pattern as 
one could have expected from similar situations. It is also shown that further away from 
equilibrium the diffusion coefficient depends explicitly on the initial conditions, that is, 
it displays a memory. The consequences of this result are investigated in Q 7 where we 
generalise the model by assuming that there may be several heavy particles immersed in 
the gas, so that a local concentration variable can be defined, and we deduce the form of 
the hydrodynamical equation of motion for this variable. The final § 8 summarises the 
main results of this work and contains some further physical remarks. 

2. The systematic expansion 

The velocity V of a heavy particle is the stochastic variable of our problem and we 
consider it to be a continuous Markovian process. From considerations of momentum 
and energy conservation it can be shown that the corresponding transition probability 
per unit time is given by 

M - m  
m 2m 2m 

(see van Kampen 1961, equation (32)) where Y is the linear density of gas molecules and 
f stands for its velocity distribution. Therefore, the velocity probability distribution 
P (  V, t )  for the Rayleigh particle obeys the continuous master equation 
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Following van Kampen’s general method we shall perform a systematic expansion 
of this equation in powers of a small parameter fl. The first step consists in specifying R 
and the dependence of the transition probability W on it. We choose as our expansion 
parameter the ratio 

fl = (m + M ) / m  (3) 

and we introduce the variable 

y = ( m  + M ) V / m .  (4) 

In terms of it the transition W is given by 

where A y  measures the size of the jump in the stochastic variable y .  Note that this form 
of W is entirely independent of fl in agreement with van Kampen’s procedure. 

Now we have to postulate the way in which P( V,  t )  depends on S Z .  In van Kampen’s 
method it is proposed that P( V, t )  has a sharp peak located at some point f l $ ( t )  with a 
width of order fl”’. This assumption is expressed formally by transforming the 
stochastic variable y to a new variable x defined by 

y = f l $ ( t ) + f l ’ l ’ x  or v = $ ( t )  + K ’ / ~ X  (6) 

where $ ( t )  is some time-dependent function which has to be determined. This is a 
crucial assumption that explicitly contains a central-limit theorem argument. Its 
correctness has to be justified a posteriori by showing that it is actually possible to choose 
$ ( t )  in such a way that x turns out to be of order unity. Therefore, as a consequence of 
(6) P( V,  t) transforms into the probability density distribution ~ ( x ,  t ) .  Starting from ( 2 )  
and using (6) it is only a matter of algebra to obtain a transformed equation for ~ ( x ,  t )  
which may be systematically expanded in powers of fl-”’. The explicit steps of this 
transformation and the resulting equations may be found in van Kampen (1965,1976). 

3. The macroscopic equation 

The jump or derivative moments of the probability distribution W are defined by 
m 

(7) 

Using the transformation defined in equation (6) they can be expanded in powers of 
fl-”’, that is, 

00 

a , ($ ( t )+ f l -1 ’2x)=  --n 1 - m / 2  a, ( m )  ( $ ( t ) ) x ”  =a,,O($)+fl-’/’an,l+. . * . 
,,,=om! 

Here a(,“) denotes the mth derivative of a, with respect to its argument and evaluated 
at x = 0. Note that since in equilibrium $ ( t  = CO) = 0 the jump moments are constants, 
but for non-equilibrium states they will be functions of 4. 

The expansion mentioned in the previous section yields the following results (van 
Kampen 1979): The leading terms are of order fl”* and they can be made to cancel if 
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$( t )  satisfies the equation 

where t* = i2-'t. There are no fluctuations in this equation since it is obtained in the 
limit when i 2 + ~ 0 .  Moreover, it is a deterministic equation and, therefore, it can be 
identified with the macroscopic equation for the system. For the present model we can 
explicitly calculate (Y and obtain the macroscopic or phenomenological equation 
for the system. Furthermore, since in equilibrium 4(t = CO) = 0, an expansion of in 
powers of II, will describe the macroscopic behaviour of the system as it moves away 
from equilibrium. In the appendix it is shown that to order Ro 

For the purpose of the calculation of fluctuations we shall need the second derivative 
moment of W. In the appendix it is also shown that 

Note that if we set 4 = 0 in these equations we recover the corresponding equilibrium 
values obtained previously in I, namely 

Then, according to (9) and ( lo) ,  and up to third order in 4, the resulting expansion 
for the macroscopic equation is given by 

It therefore follows that the linearised equation can be written as 

d4( t ) ld t  = -r4(t) (14) 

where for the damping coefficient y we obtain 

and the linearised solution, for given +bo= + ( t  = 0), is 

+(t )  = 4o e-''+ 0 ( 4 ~ ) .  116) 

Equation (14) corresponds to the familiar damping law for the velocity of the 
Rayleigh particle (Hoare 1971), V = - yV. This macroscopic equation has one sta- 
tionary solution and all the other solutions converge to it. Therefore all solutions are 
asymptotically stable, and the effect of an instantaneous fluctuation dies out so that a 
continually acting perturbation has no cumulative effect. In the stationary state the 
effect of the fluctuations is balanced by the macroscopic tendency of returning to the 
stationary solution, thus satisfying the fluctuation-dissipation theorem. 
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The next order approximation to the macroscopic equation is given by 

drl/ldt= - Y $ - Y ~ $ ~ + O ( $ ~ )  (17) 
with 

y1=-- 

From it we get the first nonlinear correction 

$ ( t )  = $o e-"[l+ r&(i - e-zyf)]-l'z 

for given $o, with 
1 r =  y l / y  =am/kgT.  

4. The fluctuations 

To order no in the systematic expansion of the master equation we have that (van 
Kampen 1979) 

This is a Fokker-Planck equation with time-dependent coefficients from which we may 
derive equations for the first moments of T. Thus we obtain that 

Note that the first equation is identical to the variational equation associated with 
equation (9), that is, the equation for the difference between two neighbouring 
solutions. Since from (10) we know that ai,o <0, we conclude that macroscopic 
stability determines that the average (x) of the fluctuations will not grow with time and 
therefore the fluctuations will remain small at all times. 

The equations for the average and the variance can be solved exactly for given 
xo = ( x ( $ o ) ) ,  xz = ( x ~ ( $ ~ ) ) .  We find that 

and 

In order to calculate the fluctuation spectrum, first we have to compute the autocor- 
relation function defined as the limit of 

( X ( t l ) X ( f z ) ) - ( x ( f l ) ) ( X ( f z ) )  (26) 
when tl + CO, t2 + CO, with fixed f Z  - tl. To this end we calculate (x(tl)x(t2)) starting from 
the well known equality 

T(xlt1; xztz) = T(Xltl)T(XZtZIXltl) f Z  > tl (27) 
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from which it follows that 

(Xl ( t l )X2( t2 ) )  = j dxl x l ( t l ) . r r ( X l t l ) ( X ( i 2 -  tl)>,, . 

If we use equations (24)  and (25 )  in equation (28) ,  we find that 

(xl(fl)x2(t2)) 

Note that this is an exact result which, in principle, could be evaluated using the exact 
expressions for $ and the jump moments involved. However, since we have only 
calculated the macroscopic equations near equilibrium, we shall evaluate equation (29)  
using, for the jump moments the first terms containing $ in equations (10) and ( l l ) ,  
namely 

ai,o($) = -8v (kBT/2.rrm)"*$ (30) 

Accordingly we obtain that 

with 

In a similar fashion we find the average ( x ( t ) )  as an implicit function of r. From 
equations (24)  and (30)  we have that 

( x ( t ) )  = xo$(d. (33 )  

Now we can calculate the velocity-velocity correlation function. If we first insert 
equation (19) into equations (32)  and (33),  and if the resulting expressions are 
substituted into equation (26), after taking the indicated limits we find that 

(34 )  

with f = t2 - t l .  This correlation corresponds to a stationary process and near equili- 
brium (r+ 0) it reduces to the usual exponential decay. 

( x ( O ) x ( i ) )  = ( k , T / m )  e-Y'[ l  +I'&(l -e-2y')]-1'2 

5. The fluctuation spectrum 

The connection between the fluctuations spectrum and the autocorrelation function for 
a stationary process with a finite correlation time is given by the Wiener-Khintchine 
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theorem 

(x(O)x(t))  cos wt dt. 

If we introcdce into this expression the correlation function given by equation ( 
find that the first nonlinear correction to the spectrum is given by 

(35) 

4) we 

which is a combination of Lorentzianst. Clearly, near equilibrium (F+ 0) it reduces to 

2 kBT y S ( w ) = -  - ~ 

IT m y 2 + w 2 ’  
(37) 

If we use equation (15) this spectrum can be expressed as an expIicit function of T, i.e. 

S ( w )  = A T 3 / ’ ( h T +  w2)-’  (38) 
with 

and 

6. The diffusion coefficient 

Another quantity of interest that we can compute from the autocorrelation function is 
the time-dependent diffusion coefficient defined by (Dorfman 1975) 

Dc0)( t )  = I‘dt’  (x(O)x(t’)) .  
0 

Using equation (34) we find that in the moderately nonlinear regime 

and for the near equilibrium limit (I? + 0) it reduces to 

kBT 1 D(O)(t) = - -(I - e-yf), 
m y  

(43) 

If we use equation (15) in the last equation, the diffusion coefficient can be written as 
an explicit function of the temperature and the density, i.e. 

t This result agrees with those obtained by Hoare (1971). Hoare and Rahman (1974) using a different 
approach. 
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Therefore, near equilibrium the diffusion coefficient varies as and depends upon 
the density v varying inversely with it. As could be expected, this dependence on T and 
v is the same as the one obtained from the first approximation to the Chapman-Enskog 
expression for the diffusion coefficient (Chapman and Cowling 1970). On the other 
hand, as the system moves further away from equilibrium the diffusion coefficient, given 
by equation (42), is no longer a simple function of temperature and density, since r is 
also a function of T as given by equation (20). 

7. Generalisation 

From the results of the previous section we observe that the near equilibrium expression 
for the time-dependent diffusion coefficient, given by equation (43), does not depend on 
the initial value t,bo, as expected. On the other hand, further away from equilibrium it 
depends explicitly on the initial condition t,bo, as shown in equation (43). Therefore we 
may conclude that as the departure from equilibrium increases a memory appears in the 
system. In order to investigate this idea in more detail, we generalise our model by 
assuming that we have several massive particles instead of one so that we can define a 
local concentration variable (C(r,  t ) ) ;  here the angular brackets indicate a non- 
equilibrium average. As a first approximation we consider that all the heavy particles 
are independent. The fact that the total mass of the heavy particles is conserved is 
expressed by the continuity equation 

a 
-(C(r,  t ) ) + V  * (jc(r,  t ) )  = 0 
at 

(45) 

where ( j c ( r ,  t ) )  is the concentration current. 
If we assume that all the properties of the system vary slowly in space and time, i.e. 

for small frequencies, then it is well known that the local concentration obeys the 
constitutive relation 

(j'(r, d) = -DV(C(r, t ) )  (46) 

where D is a positive constant. With this assumption and the conservation law (45) we 
can then obtain the familiar diffusion equation for (C(r,  t ) ) ,  i.e. 

For an infinitely extended system and for given initial conditions this equation is trivially 
solved by performing a Fourier transformation in space 

(C(k ,  c)) = dr exp(-ik - r>(C(r, t ) )  

and a Laplace transformation in time 
r *  

(C(k ,  z ) ) =  J dt e'"(C(k, t ) )  Imz>O 
0 

(49) 

where k is the wavevector and z the complex frequency of the fluctuation. Then from 
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(47) we explicitly obtain 

Let us now consider larger frequencies. In this case C(r, t) varies more rapidly and 
we should therefore expect a time lag between C and j’. Hence, instead of equation 
(46) we could try a more general constitutive relation such as 

( jc (r ,  t ) )  = - D(t - t’)V(C(r, t)) dt’. Ib 
Here the function D(t - t’), a time-dependent diffusion coefficient, is called a memory 
function and it incorporates in a causal way the effect of all the fast processes occurring 
in the system. Note that since we have found the explicit expressions for D(r - t’) we can 
evaluate the current jc(r ,  t )  and from it the continuity equation (45). In this way we can 
then obtain a hydrodynamical equation for (C(r,  t)) which would be the analogue of 
equation (47). In order to do this we observe that the expressions found for the 
time-dependent diffusion coefficient, as given by equations (42) and (43), depend on 
time in an exponential form, i.e. 

(52) 

Here the relaxation time 7 associated with the rapid processes and the coefficient d 
could be identified directly from equation (42); however their explicit form is not 
needed since the essential point of our discussion is to find the structure of the 
corresponding solution for (C(r,  1)). Therefore, inserting this equation into equation 
(51), putting all into the conservation law (45) and performing the Fourier-Laplace 
transformation mentioned above, we find that 

D(t - t’) = (d/T) exp[-(t - ?’)/TI. 

From this expression we can obtain the response function (see Forster 1975, ch 2 and 3) 

and its absorptive part 

wk2 d 
wZ+dZ(k2- w2T/d)2X’ x”(k, w )  = ( 5 5 )  

If we now transform back to the variables r and t, we conclude that equations (53)-(55) 
are equivalent to the following hydrodynamical equation of motion for (C(r,  t)) 

[ $ + 5 (: - dVz)] (C(r,  t)) = 0. 

8. Discussion 

In this last section we should like to summarise briefly the main results obtained 
throughout this paper. Starting from the master equation and using the systematic 
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expansion introduced by van Kampen, we have obtained the phenomenological 
equation for the average velocity of the Rayleigh particle near and slightly further away 
from equilibrium. The degree of departure from equilibrium is measured in powers of 
the function +( t ) ,  as discussed in 8 2. It is important to emphasise that in our discussion 
the size of the system, as measured by the parameter a, has always been kept constant. 
It would be of interest to investigate the effects of driving the system away from 
equilibrium and at the same time varying its size. 

Next, to order zero in SZ we have calculated the non-equilibrium fluctuations and 
their influence on the time-dependent diffusion coefficient. We found that no long-time 
tail pattern emerges to the orders considered. Furthermore, not close to equilibrium 
the diffusion coefficient exhibits an explicit dependence on the initial conditions, 
indicating the appearance of a memory in the system; the form of the memory kernel 
does not have to be postulated, but emerges naturally from the calculations. In order to 
examine the implications of this fact we generalised the model by allowing for the 
possibility of having several independent massive particles, so that a local concentration 
of them can be defined. Then we deduced the response function and the form of the 
hydrodynamical equation for the local concentration variable. 

It may also be remarked that this model can be generalised to three dimensions but 
we expect that, in spite of the isotropy of the system, effects such as the persistence of 
the velocity would have to be taken into account explicitly. 
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Appendix 

We calculate explicitly the derivative moments and a z , o ( J / ) .  According to 
definition (7) and using (5) we have that 

where 

($Ay’ + VAy )) dAy. 
m 

If we define 

V 
m m 

CL== 77== 

and if 
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the integral I can be written as 
m 

I = -2 I, u 2  e-Nu2 sinh vu du. 

Evaluating this integral (Gradshteyn and Ryzhik 1965, p 365) and using (73) we obtain 
that 

(Ab) 

where @ stands for the error function. Using for V the transformation defined by 
equation (6) and the expansion (8) we obtain equation (10). 

Similarly, from definition (7) and using the distribution function ( 5 )  we can express 
the second derivative moment as 

CY’( V) =:(-)I” m exp( -= m V2) J 4 2 w k ~ T  

where 

If we use (A3) and (A4), J may be expressed in the form 

J = 2 lo u 3  e-@”’ cosh vu du. 
m 

The value of this integral is given by (Gradshteyn and Ryzhik 1965, p 366) 

J = r ( 4 ) ( 2 ~ ) - ~  exp(v2/8~L) ( 0 - 4 ( 2 )  + 0 - 4 ( - 2 ) )  

where z = q/JG and D - 4 ( Z )  represents the parabolic cylinder function defined by 
(Gradshteyn and Ryzhik 1965, p 1064) 

( ~ 1 1 )  0-4(2) =i (2+z2)  e-‘’’4-~J.rr/2z(3+z2) e22/4(1 -@(z/J$). 

On substituting in (A10) we obtain 
2 

J = 32 (5) [2 + z + (3 + z ’) e2’”@(z) J 

and from (A7) we finally obtain 

If we now transform V according to (6), then the first term in the expansion (8) is given 
by (11). 
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